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The Convergence of an Algorithm for Solving 
Sparse Nonlinear Systems 

By C. G. Broyden 

Abstract. A new algorithm for solving systems of nonlinear equations where the Jacobian 
is known to be sparse is shown to converge locally if a sufficiently good initial estimate of the 
solution is available and if the Jacobian satisfies a Lipschitz condition. The results of 
numerical experiments are quoted in which systems of up to 600 equations have been solved 
by the method. 

1. Introduction. As more efficient techniques [7], [8] are developed for handling 
large matrices of random sparseness, it is inevitable that attention will eventually 
turn to the problem of solving large sparse nonlinear systems. We regard a nonlinear 
algebraic system as sparse if a large proportion of the elements of its Jacobian are 
zero over the domain in which we are interested. Indeed, problems of this type have 
already been solved [4], [9], using Newton's method, but since, for certain problems, 
Newton's method is inferior to methods of quasi-Newton type [1], [2], it is natural 
to attempt to modify these latter methods to enable them to cope with sparse systems. 

A drawback becomes immediately evident when considering possible modifications 
to Broyden's method [1]. One of the advantages possessed by the latter is that an 
approximation to the inverse Jacobian is used, thereby making it unnecessary to 
solve a set of linear equations at every iteration. This device cannot readily be retained 
when solving sparse systems since the inverse of a sparse matrix is in general not 
sparse, and the consequent benefits would then be destroyed. A major advantage of 
Broyden's method thus disappears at one stroke. Neither is it possible to use the 
equivalent Broyden update on the Jacobian since this consists of adding a single-rank 
matrix to the old approximate Jacobian to form the new one. In general, this single- 
rank correction is not sparse so that again the advantages conferred by sparseness 
would be lost. It is possible, however, to modify this single-rank correction so that 
it is not only sparse but also enables the new approximate Jacobian to satisfy the 
quasi-Newton equation, and this has been done by Schubert [14]. The properties of 
this modified algorithm, both theoretical and experimental, form the subject of this 
paper. 

In Section 2, a device for specifying the positions of the nonzero elements of the 
Jacobian is established and a formal description of the new algorithm is given. 
Section 3 is devoted to providing local convergence proofs under the assumption 
that the Jacobian satisfies a Lipschitz condition of order one while in Section 4 the 
results of certain numerical experiments are discussed. An overall assessment of 
the algorithm appears in the final section. 
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2. The New Algorithm. A prerequisite for the discussion of algorithms specific 
to sparse systems is a device for indicating precisely which elements of the Jacobian 
matrix are known to be always zero. Of the many available, we choose one that uses 
a set of diagonal matrices Si, j = 1, 2, * * *, n, where the kth diagonal element of Si 
is zero if it is known that af/laxk = 0, and unity otherwise. It follows that if J(x) 
denotes the Jacobian matrix [6] evaluated at x, and if u; is the jth column of the unit 
matrix of order n, then 

(2.1) u,J(x) = u,J(x)Sj, j 1, 2, , n. 

Since our approximation B to J(x) is similarly sparse, it follows that 

(2.2) u,B = u7BSi, j = 1, 2, , n. 

We are now in a position to describe the algorithm, ignoring any initialisation pro- 
cedure and denoting new values by the subscript unity. 

1. Compute p, where 

(2.3) p 

2. Compute xl, where 

(2.4) xl =x + pt 

and t is some scalar, not equal to zero, whose choice we discuss below. 
3. Compute f and test for convergence. If this has not occurred, 
4. Compute y, where 

(2.5) y = f-f 

5. Compute Bl, where 
n1 T 

(2.6) B = B - E u1uT(Bp - yC1 )-Ps 
j-l pipi 

and 

(2.7) Pi = Sip. 
6. Repeat from step 1. 
The scalar t is either set equal to unity or chosen so that I If, I I < I If I 1. For a fuller 

discussion of these strategies, see [1] and [3]. In the subsequent sections of the paper, 
we restrict ourselves to the case where t = 1, and it then follows from Eqs. (2.3), (2.5) 
and (2.6) that B1 is given by 

T 

(2.8) B1=- B + lf 

We note from Eqs. (2.4)-{2.6) that since p ap = pTip, the quasi-Newton equation 

(2.9) B (xl -x) = f, -f 

is satisfied by Bl. We further note from Eq. (2.6) that 

uTB, = u, B - (Bp - yt1) rP] 

so that since pT = pTS, if Eq. (2.2) is satisfied it follows that 

(2.10) uTB1 = u B1Si, 
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so that the sparseness characteristics of B are preserved. The correction matrix 
added to B to give B1 is not, however, a rank-one matrix, its rank being determined 
by the sparseness characteristics of the Jacobian and the presence of odd zeroes in 
the vectors y and p. A further consequence of Eqs. (2.2) and (2.7) is that Eq. (2.6) 
may be written 

n T 

T(Bi yt1)pi (2.11) B1 - B- E u1u~(Bpj - yt) PT B T 
i=_1 pipi 

Now, it follows from Eq. (2.3) that p is null only if f is null, and this, by definition, 
occurs only at the solution. It is, however, possible that pi might be null for some j 
when p is not null and since this could cause a division failure when evaluating B1, 
we now consider how this contingency may be overcome. 

It is shown in the next section that subject to certain conditions 

T u 1y = u 1 J(x)pit, 

where J(xj) is the Jacobian of f(x) evaluated at some point, depending upon j, lying 
on the line joining x and xl. Thus, Eq. (2.11) may be written 

n T 

B1 = B- u;UT[B- J(Xj)] pipiT 
j =1 p ipi 

so that the correction applied to B does not depend directly upon I jpi I 1. In the event 
that pi is null, the jth term in the sum could well be ignored. This is equivalent to 
replacing the matrix pipT/p,pP by the null matrix and we note that this does not 
invalidate the convergence proofs appearing in the next section. Perhaps the best 
practical procedure is to ignore the jth term in the update if I [pA I I < 6 I Ip I 1, where 6 
is some suitable small quantity. This device was not found to be necessary when 
carrying out the tests described in Section 4 (below). 

We give now a less formal description of the matrix update that illustrates its 
relationship to the update given by Broyden [1]. Thus: 

1. Compute the correction given by Broyden [1, Method 1]. In general, the 
correction, if added to B, would give a nonsparse matrix. 

2. Set those elements of the correction matrix corresponding to the zero elements 
of B themselves to zero. Note that if this correction is added to B as it stands, the 
new matrix will not, in general, satisfy the quasi-Newton equation (2.9) though it 
will be sparse. 

3. Scale each row of the sparse correction independently so that when the scaled 
sparse correction is added to B the resulting B1 does satisfy the quasi-Newton 
equation. 

It is readily seen that this is equivalent to the correction formalised in Eq. (2.6), 
and to the method as proposed by Schubert [14]. It has the interesting property that 
if fi(x) is a function of xi alone for all j, so that the Jacobian becomes diagonal, the 
algorithm reduces to the secant algorithm applied in parallel to all the fl's. If, on the 
other hand, every Si is the unit matrix, the method becomes Broyden's original 
method. Thus, in the cases of maximum and minimum sparseness the algorithm 
reverts to known methods, which may themselves in turn be regarded as special 
cases of the new method. 
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3. A Local Convergence Proof. This section is devoted to obtaining local 
convergence proofs for the algorithm for two different choices of the initial approxi- 
mation to the Jacobian. Note that 1 - denotes the Euclidean norm in the case of 
both vector and matrix. We distinguish, where necessary, the spectral matrix norm 
by the subscript s. 

THEOREM 1. Let s be a solution of the equations in question so that 

(3.1) f(s) = 0. 

Assume that there exists a neighbourhood N of s such that 
(1) Vf satisfies a Lipschitz condition on N of order one with constant Li, 
(2) xo E N, where xo is the initial approximation to the solution, 

(3) Ileoll < 1i/aL, 

where eo = xo - s, Al = 0.244, a IA-1 I., A is the Jacobian of f(x) at s, and 
is 

(3.2) L2= 
i.l 

)IIEO12 
10 - (aLIleoll_ L_ leol (4) JE 112_? 2 

\a(l + 01) /I-0 

where Eo = Bo - A, Bo is the initial approximation to the Jacobian and 01 , 0.671. 
Then, if xr is the rth approximation to the solution generated by the algorithm with 

t = I, and e, = xr-s, 

(3.*3) l |e, | < O'l|leo ll| 

Proof. We first consider the change in the approximation B to the Jacobian that 
occurs as a result of the matrix update, and, as before, we use the subscript unity 
to denote new values. If we define the matrix error E by E = B - A, we have, from 
Eq. (2.11), 

n T 

E1 = E- uju%(A + E)p, y] 

so that 

urEl- u?EKI - r )- u,(Ap, -Y) , j = 1, 2, *, n. 

Now, if x C N and xl C N, it follows from a result quoted by Kantorovich and 
Akilov [13, p. 660], and Eqs. (2.1), (2.5) and (2.7) that 

uT,y = uJ(x + pli)p;, 

where 0 < ii < 1. Thus, since A =J(s), 
/ T\ T 

(3.4) u ,E1 = u EI- T - U?[ J(s) - J(x + Pi'Z)] Tj-, 
p ipi p ip, 

so that, since p,pTI/p?ip is both symmetric and idempotent, 

|Iu ?E1 |12 < |ju E 12 + I uI J(s) - J(x + t )]112. 
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It follows from the first condition of the theorem and the definition of e that 

(3.5) l Iu?E, 112 < I IuTEj' 12 + L2l le + pti 1 12; 

and if lel!! < [le!!, so that lie + p II < le !!, it further follows from the fact that 
0 < 4i < 1 that Ile + pitII < liell. Substituting this result in inequality (3.5) and 
summing over j, then gives, from Eq. (3.2), 

(3.6) |jE,112 < IjE!12 + L21lelj2. 

We consider now the relationship between the successive vector errors e and e,. 
Condition (1) of the theorem, together with Eq. (3.2), implies that, for x, y E N, 
IIJ(x) - Jy)i I < LI x - y II so that, since the spectral norm cannot exceed the 
Euclidean nonn, 

(3.7) !I1 J(x) - J(y)I,8 < LI x - yII. 

If we now define r by 

(3.8) r- f(x) - Ae, 

it follows from Eq. (3.7) and a lemma quoted by e.g. Dennis [12] that 

(3.9) llrll < LfLIfel12. 

Now x, = x - B-'f(x) so that, from Eq. (3.8) and the definition of e, 

(3.10) e1 = e - B-'( Ae + r). 

Now, since E = B - A, 

B-1= (I + A-'E)-'A-' and I - B A (I + A-'E)-'A-'E 

so that Eq. (3.10) becomes 

el= (I + A-'E)A '(Ee -r). 

Thus, if af El I < 1, taking norms and applying Eq. (3.9) yields 

(3 11) X < ~~~ae(||E|t +Ul|lell) le!< 2(ii 4ie 
(3e.1 l -e!lEll 

The proof now proceeds inductively, and we use the subscripts i and r to denote 
ith and rth approximations, respectively. 

Assume that ffe, l l leie-, I , i - 1, 2, * , r, where 0 < 0 < 1. Then, from 
Eq. (3.6), 

(3.12) lE I liE0!!' + 
L'ffeoff'(l ? 02 + ... -t 

0'r- 

K if Eo f12 + 102' 

Now, a sufficient condition that le,.+,II ? lle,11 is, from Eq. (3.11), 1 Er! _ 
(0 - 1aL!erfI)/1a(l + 0). Since we require that Ile, I < lfeoff, r > 0, this condition 
is satisfied if 

0 - (1aL!leoll (3.13) iIE7I1 :9 2(+0 
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and it thus follows from Eq. (3.12) that Iler+III < 0lelrI if 

iI{E lI' + LkleOI I < (o 2aLI_Ieje \ 
i \~e a( + 0)) 

or 

(3.14a) a2IEoII2 < (0 1) _ 2 

where 

(3.14b) a= aLIleol 

It is clearly only possible to satisfy Eq. (3.14a) if 

(01)2 1 
2E9y 

A 
> O 

or 

(3.15 < 20( -_ 02)1/2 
(3.15) ~~~~~~~ (1I 02)1712 + 2(1 + 0) 

and since we wish to obtain the most generous bound for I e0 j, we find that value 
of 0, 0 < 0 < 1, that maximises ,u. Denoting this value by 01 and the corresponding 
value of lAby I,,, we find on differentiating Eq. (3.15) that 01 - 0.671, ,ul 0.244. 

Thus, provided that I je0 I and I I Eo j satisfy the third and fourth conditions of 
the theorem, and Ilell < e1IIe, 1I, i = 1,2, ... , r, then IIe,+1I < OiIIerII, so that 

Iler7+tII | < l I eIe|II, m = 1, 2, * . . It is trivial to demonstrate that if the conditions of 
the theorem are satisfied IEoII satisfies Eq. (3.13) with r = 0, so that lie1 9 ? O1IeoII. 
Thus, IIerIl < or 0eoII, completing the proof. 

THEOREM 2. If 
(1) xo E N, 
(2) BO J(XO), 
(3) 1 eo I ? _ M,2/caL, where ,2 - 0. 205, then IIe,II ? o;IIeoII where 02 ~ 0.724. 

Proof. From the argumrent used to establish Eq. (3.6), it follows that 

iiJ(s + eo) J(s)il I LileolI 

so that, from the second condition of the theorem and from the definitions of 
A, E0 and e(, 

IJEOIJ -: Lileoll. 

It then follows from Eq. (3.14a) that if Ile,II < 0jjei_1II, i = 1, 2, ..., r, 
IIer+lII || < Oller I I if 

021 0 
( 

< or ,u < 2(1 02)1/2 

_ 2 I 
+ 

or - = (I _ 02)1/2 + 2(1 + 0)(2 - 02)1/2 

The value of 0, which we denote by 02, that maximises the above expression is 
02 = 0.724 and the corresponding value of M isp, = 0.205. The proof is completed by 
induction in a manner similar to that of Theorem 1. 

We note that the third condition of Theorem 1 shows that the bound on lI eo II is 
inversely proportional to both L and a, emphasising the obvious point that the 
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better conditioned A is and the less nonlinear the equations are, the greater the 
tolerable initial error becomes. The fourth condition also corroborates an intuitively 
obvious result, that the better the initial estimate x0, the greater the tolerance that 
may be extended towards the initial Jacobian approximation Bo. 

In the case where Bo is equal to J(xo), the bound on I leo II is reduced slightly since 
an increase in IIeo cannot be compensated by a reduction in IEoIl. We note that, 
as in Theorem 1, the bound on I leo I is inversely proportional to both I jA'1 I I and L. 

Another interesting feature emerges from Eq. (3.4). The first term on the right- 
hand side of this equation is due to using an approximation to A instead of A itself, 
and the second term is due to the presence of nonlinearities in the equations to be 
solved. Despite the fact that the sources of these terms are quite independent, the 
terms themselves are not, being in fact orthogonal. This feature contributes markedly 
to obtaining the convergence proof since it means that these error terms cannot 
reinforce each other. In the nonsparse algorithm, this characteristic is still present, 
as may be seen by putting pi, j 1, 2, * * *, n, equal to p. 

We finally note that these convergence proofs do not entirely do justice to the 
alogrithm since they ignore the reduction of the matrix error norm that may occur 
due to the first term on the right-hand side of Eq. (3.4). We conjecture that in most 
cases convergence is superlinear (a conjecture supported by the experimental evi- 
dence to date), although we have been unable to prove this in the general nonlinear 
case. We have, however, been able to prove superlinear convergence for the parent 
algorithm when applied to linear systems [3]. 

4. Experimental Results. We describe here briefly the results of some 
numerical experiments carried out in ALGOL using an ICL 1909. The performance 
of the new algorithm is compared with that of Newton's method where the Jacobian 
was computed using forward differences with an increment to each variable of 0.001. 
Since a reasonably good initial estimate was available for all the problems attempted, 
it was sufficient that the step-length scaling factor t was set equal to unity, and indeed 
only problems of this type need be considered since more difficult problems may be 
broken down using a Davidenko path technique [2], [5]. The first iteration was the 
same in both cases since a forward-difference initial approximation to the Jacobian 
was used in the new algorithm. 

The comparison between methods is based upon the number of evaluations of 
individual elements of the residual vector f, the inherent assumption being that each 
element requires as much work to compute as any other. It is not satisfactory to 
compare the numbers of evaluations of the vector function f since when obtaining 
the jth row of the Jacobian by forward differences it is necessary to compute the 
jth element of f only one more time than the number of nonzero elements of that 
row. For every problem the iteration was terminated when I If II was exceeded by 
some arbitrary prescribed tolerance. 

The test problems used were chosen since they gave rise to Jacobians of band 
form. The reason for this choice was the immediate availability of a band-matrix 
linear equations routine, and the nonavailability of a similar routine to handle 
randomly sparse matrices. Since the theory of Sections 2 and 3 (above) applies 
equally to randomly sparse or banded matrices it was thought that this, coupled 
with experimental results on the band matrices (problems 7-9 show no dependence 
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TABLE 1. Type 1. E = 106 

Problem n ki IN IB NN NB 

1 5 0.1 3 5 59 43 
2 5 0.5 3 4 59 38 
3 10 0.5 3 5 124 88 
4 20 0.5 4 5 332 178 
5 600 0.5 4 5 10,192 5,398 
6 600 2.0 4 7 10,192 6,598 

of performance upon band structure), would provide sufficient justification for 
publication of the new algorithm. 

The problems are of two basic types, thus: 
Type 1. f = (3 - klxi)x + I -xi - 2xi+. 
Type 2. fh = (ki +? k,x )xi + 1 - , -r + 4). 
In each case xi, i < 1 or i > n, is regarded as zero. The parameters kl, k2 and k3 

enable the amount of nonlinearity to be varied while r, and r2 permit the bandwidth 
to be altered in equations of Type 2. Note that r, and r, are independent so that the 
band is not necessarily symmetric about the principal diagonal. 

The results of the tests are summarized in three tables. The initial estimate of 
the solution in each case was xi = -1, i = 1, 2, * * *, n, and the particular combina- 
tion of parameters for each problem is given in the tables. The symbols IN, IB, NN 
and NB denote the numbers of iterations and residual element evaluations for 
Newton's method and the new method respectively, and e refers to the final tolerance 
on IIfII. 

For problems of Type 1, (Table 1) the number of iterations required by the new 
method is somewhat higher than that required by Newton's method but even for 
problem 6 the number of element evaluations is substantially lower. It is seen that 
both methods coped adequately with a system of 600 equations. Problems 2, 3, and 4 
were among those attempted by Schubert [14] whose results are in agreement with 
those quoted in Table 1 of the present paper. 

Table 2 shows the effect, more precisely, the absence of effect, when the band 
structure of Type 2 problems is altered keeping the bandwidth constant, and Table 3 
shows how the algorithms compare as the amount of nonlinearity is varied. It is 
clear from this table that for the types of equation tested the ratio NB/NN increases 
as the nonlinearities become more pronounced but even in the worst case (problem 23) 

TABLE 2. Type 2. n = 100, k= = = k3 = 1.0, e = 10' 

Problem r1 r2 IN IB NN NB 

7 3 3 4 8 3252 1588 
8 2 4 4 8 3248 1587 
9 5 1 4 8 3236 1584 
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TABLE 3. Type 2. n - 50, r- r2 - 5, e = 10- 

Problem k, k2 k3 IR NN NB 

10 1 1 1 4 8 2330 970 
11 2 1 1 5 10 2900 1070 
12 1 2 1 5 11 2900 1120 
13 3 2 1 5 11 2900 1120 
14 2 3 1 5 15 2900 1320 
15 3 3 1 5 16 2900 1370 
16 2 2 1 5 11 2900 1120 
17 1 2 2 4 7 2330 920 
18 2 2 2 4 9 2330 1020 
19 2 3 2 4 11 2330 1120 
20 2 4 1 5 20 2900 1570 
21 2 5 1 5 23 2900 1720 
22 3 4 1 5 19 2900 1520 
23 3 5 1 5 24 2900 1770 

this ratio does not exceed 2/3. The total number of iterations, however, is up by a 
factor of 5. Clearly, whether or not the new method is competitive depends upon 
the cost of computing f relative to solving the band equations, and this will of course 
vary with different problems. 

A final comparison may be made, through problems 1-4, with the Broyden's 
original method [1]. This solved these problems to comparable accuracy in 5, 5, 7 
and 8 iterations respectively compared with the new method's 5, 4, 5 and 5. It thus 
appears that for some sparse equations the new method is better, in terms of iterations, 
than the old one and simple theoretical considerations support this conclusion. 

5. Discussion and Conclusions. The results quoted in the previous section 
show that for mildly nonlinear problems the new method offers a useful if modest 
improvement upon Newton's method, but that this improvement tends to vanish 
as the nonlinearities become more pronounced. It also appears, since systems of up 
to 600 equations were tested, that size alone provides no difficulties for tlle new 
method. The convergence proofs of Section 3, guaranteeing convergence provided 
certain conditions are satisfied bestow a certain amount of respectability upon the 
algorithm and confidence in its use. The practical superiority of the new method 
over Newton's method though depends heavily upon the relative amounts of computa- 
tion required in the evaluation of f and the solution of the band system. If f is extremely 
laborious to compute, and such functions may occur in practice, then the new method 
will be superior. 

We consider now the computational aspects of the method. If t = 1 the matrix 
update is given by Eq. (2.8) and it is necessary only to store the vector p in addition 
to those matrices and vectors whose storage is required by Newton's method, namely 
x, f and B (the last in packed form with some marker device for indicating the position 
of the nonzero elements). It is true that Eq. (2.8) requires the availability of the n 
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vectors p,, but these may be obtained directly from p using the marker device. Even 
if I # 1, only one further vector need be stored so that from the standpoint of com- 
puter storage the method appears to be extremely attractive until one remembers 
that most routines for solving sparse linear systems destroy the original matrix. 
Since this is required for updating, it is necessary to retain a copy so that the "packed" 
matrix storage is doubled. This might be a serious disadvantage of the method but 
one which could perhaps be overcome, for certain problems, by using a device due 
to Bennett [11], whereby the factors L and U of B are stored and updated. 

One concludes therefore that the new method cannot be regarded as being the 
automatic choice in every case where the Jacobian is difficult to evaluate. For large 
problems or small computers, storage requirements may be paramount, and even 
if the storage is available, the software being used may make it not readily accessible. 
Thus, the potential user of the new algorithm must decide for or against its use only 
after a comprehensive survey of the computing facilities available to him. 

The author is extremely grateful to Mr. K. Fielding, now of the University of 
Surrey, for undertaking the numerical experiments and to the referee for suggesting 
improvements to the convergence proof. 
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